795 research outputs found

    Traceroute sampling makes random graphs appear to have power law degree distributions

    Full text link
    The topology of the Internet has typically been measured by sampling traceroutes, which are roughly shortest paths from sources to destinations. The resulting measurements have been used to infer that the Internet's degree distribution is scale-free; however, many of these measurements have relied on sampling traceroutes from a small number of sources. It was recently argued that sampling in this way can introduce a fundamental bias in the degree distribution, for instance, causing random (Erdos-Renyi) graphs to appear to have power law degree distributions. We explain this phenomenon analytically using differential equations to model the growth of a breadth-first tree in a random graph G(n,p=c/n) of average degree c, and show that sampling from a single source gives an apparent power law degree distribution P(k) ~ 1/k for k < c

    Colourings of cubic graphs inducing isomorphic monochromatic subgraphs

    Get PDF
    A kk-bisection of a bridgeless cubic graph GG is a 22-colouring of its vertex set such that the colour classes have the same cardinality and all connected components in the two subgraphs induced by the colour classes (monochromatic components in what follows) have order at most kk. Ban and Linial conjectured that every bridgeless cubic graph admits a 22-bisection except for the Petersen graph. A similar problem for the edge set of cubic graphs has been studied: Wormald conjectured that every cubic graph GG with E(G)0(mod2)|E(G)| \equiv 0 \pmod 2 has a 22-edge colouring such that the two monochromatic subgraphs are isomorphic linear forests (i.e. a forest whose components are paths). Finally, Ando conjectured that every cubic graph admits a bisection such that the two induced monochromatic subgraphs are isomorphic. In this paper, we give a detailed insight into the conjectures of Ban-Linial and Wormald and provide evidence of a strong relation of both of them with Ando's conjecture. Furthermore, we also give computational and theoretical evidence in their support. As a result, we pose some open problems stronger than the above mentioned conjectures. Moreover, we prove Ban-Linial's conjecture for cubic cycle permutation graphs. As a by-product of studying 22-edge colourings of cubic graphs having linear forests as monochromatic components, we also give a negative answer to a problem posed by Jackson and Wormald about certain decompositions of cubic graphs into linear forests.Comment: 33 pages; submitted for publicatio

    Geographical variation in certification rates of blindness and sight impairment in England, 2008-2009

    Get PDF
    To examine and interpret the variation in the incidence of blindness and sight impairment in England by PCT, as reported by the Certificate of Vision Impairment (CVI). Design: Analysis of national certification data. Setting: All Primary Care Trusts, England. Participants: 23 773 CVI certifications issued from 2008 to 2009. Main Outcome measures: Crude and Age standardised rates of CVI data for blindness and sight loss by PCT. Methods: The crude and age standardised CVI rates per 100 000 were calculated with Spearman's rank correlation used to assess whether there was any evidence of association between CVI rates with Index of Multiple Deprivation (IMD) and the Programme Spend for Vision. Results: There was high-level variation, almost 11-fold (coefficient of variation 38%) in standardised CVI blindness and sight impairment annual certification rates across PCTs. The mean rate was 43.7 and the SD 16.7. We found little evidence of an association between the rate of blindness and sight impairment with either the IMD or Programme Spend on Vision. Conclusions: The wide geographical variation we found raises questions about the quality of the data and whether there is genuine unmet need for prevention of sight loss. It is a concern for public health practitioners who will be interpreting these data locally and nationally as the CVI data will form the basis of the public health indicator ‘preventable sight loss’. Poor-quality data and inadequate interpretation will only create confusion if not addressed adequately from the outset. There is an urgent need to address the shortcomings of the current data collection system and to educate all public health practitioners

    An algorithm for counting circuits: application to real-world and random graphs

    Full text link
    We introduce an algorithm which estimates the number of circuits in a graph as a function of their length. This approach provides analytical results for the typical entropy of circuits in sparse random graphs. When applied to real-world networks, it allows to estimate exponentially large numbers of circuits in polynomial time. We illustrate the method by studying a graph of the Internet structure.Comment: 7 pages, 3 figures, minor corrections, accepted versio

    Ising Model on Networks with an Arbitrary Distribution of Connections

    Full text link
    We find the exact critical temperature TcT_c of the nearest-neighbor ferromagnetic Ising model on an `equilibrium' random graph with an arbitrary degree distribution P(k)P(k). We observe an anomalous behavior of the magnetization, magnetic susceptibility and specific heat, when P(k)P(k) is fat-tailed, or, loosely speaking, when the fourth moment of the distribution diverges in infinite networks. When the second moment becomes divergent, TcT_c approaches infinity, the phase transition is of infinite order, and size effect is anomalously strong.Comment: 5 page

    Self-organization of collaboration networks

    Get PDF
    We study collaboration networks in terms of evolving, self-organizing bipartite graph models. We propose a model of a growing network, which combines preferential edge attachment with the bipartite structure, generic for collaboration networks. The model depends exclusively on basic properties of the network, such as the total number of collaborators and acts of collaboration, the mean size of collaborations, etc. The simplest model defined within this framework already allows us to describe many of the main topological characteristics (degree distribution, clustering coefficient, etc.) of one-mode projections of several real collaboration networks, without parameter fitting. We explain the observed dependence of the local clustering on degree and the degree--degree correlations in terms of the ``aging'' of collaborators and their physical impossibility to participate in an unlimited number of collaborations.Comment: 10 pages, 8 figure

    Sudden emergence of q-regular subgraphs in random graphs

    Full text link
    We investigate the computationally hard problem whether a random graph of finite average vertex degree has an extensively large qq-regular subgraph, i.e., a subgraph with all vertices having degree equal to qq. We reformulate this problem as a constraint-satisfaction problem, and solve it using the cavity method of statistical physics at zero temperature. For q=3q=3, we find that the first large qq-regular subgraphs appear discontinuously at an average vertex degree c_\reg{3} \simeq 3.3546 and contain immediately about 24% of all vertices in the graph. This transition is extremely close to (but different from) the well-known 3-core percolation point c_\cor{3} \simeq 3.3509. For q>3q>3, the qq-regular subgraph percolation threshold is found to coincide with that of the qq-core.Comment: 7 pages, 5 figure
    corecore